

VAAL UNIVERSITY OF TECHNOLOGY

FACULTY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT PROCESS CONTROL AND COMPUTER SYSTEMS ENGINEERING SYLLABUS

INSTRUCTIONAL OFFERING: Work-place-based Learning

INTERNAL CODE: EIEXC1A

INSTRUCTIONAL PROGRAMMES: Diploma in Electrical Engineering

ASSESSMENT: Work Based Assessments

NQF LEVEL: 5

CREDITS: 14

DOCUMENT REVISION: March 2019

1. Syllabus Content

- a) Learning content must include company policies, procedures, safety and professional requirements.
- b) Specific learning content is determined by the Employer. The following represents typical fields of learning content: Computer Hardware Systems, Operating Systems, Networks, Software, Databases and Software Engineering.
- c) As an NQF level 5 module these fields would typically include: procedures for maintenance of Servers, PC's, Laptops, Printers and other Peripheral Devices. This includes both hardware and operating systems. Installation and configuration of employer applications is also included.
- d) An additional area in which work-place-based learning is recommended is in the introductory aspects of network maintenance such as cabling and physical infrastructure.
- Another area where students may receive world-place-based exposure is in the maintenance and administration of database and software systems.

2. Learning Outcomes

It is a compulsory requirement of this course that the student should be able to:

 Display knowledge and understanding of company policies, procedures, safety and professional requirements. After completion of this course the student should be able to demonstrate the following:

- Display an understanding of maintenance procedures, functions and use of Servers, PC's, Laptops, Printers and Peripheral Devices in the work environment.
- Demonstrate the ability to assemble, configure and commission computer hardware infrastructure for a business/industrial environment.
- Demonstrate the ability to build and cable network infrastructure and perform basic configuration according to industry standards and codes.
- Demonstrate the ability to install, maintain and administer software and/or database systems for a business environment.

3. Graduate Attributes (GA's)

This module aids to assess the following ECSA defined graduate attributes as applicable to work-place-based learning:

Graduate Attribute 1: Problem Solving

Apply engineering principles to systematically diagnose and solve well-defined engineering problems.

Graduate Attribute 2: Application of scientific and engineering knowledge

Apply knowledge of mathematics, natural science and engineering sciences to applied engineering procedures, processes, systems and methodologies to solve *well-defined* engineering problems.

Range Statement: Knowledge of mathematics, natural science and engineering science is characterized by:

- A coherent range of fundamental principles in mathematics and natural science underlying a subdiscipline or recognised practice area.
- 2. A coherent range of fundamental principles in engineering science and technology underlying an engineering sub-discipline or recognised practice area.
- 3. A codified practical knowledge in recognised practice area.
- 4. The use of mathematics, natural sciences and engineering sciences, supported by established mathematical formulas, codified engineering analysis, methods and procedures to solve well-defined engineering problems.

Graduate Attribute 5: Engineering methods, skills, tools, including Information technology

Use appropriate techniques, resources, and modern engineering tools including information technology for the solution of *well-defined* engineering problems, with an awareness of the limitations, restrictions, premises, assumptions and constraints.

Range Statement: A range of methods, skills and tools appropriate to the discipline of the program including:

- 1. Sub-discipline-specific tools processes or procedures.
- 2. Computer packages for computation, simulation, and information handling;
- 3. Computers and networks and information infrastructures for accessing, processing, managing, and storing information to enhance personal productivity and teamwork;
- 4. Basic techniques from economics, management, and health, safety and environmental protection.

Graduate Attribute 11: Workplace practices

Demonstrate an understanding of workplace practices to solve engineering problems consistent with academic learning achieved.

Note: The purpose of work-integrated learning is to enable the learner to connect academic learning with workplace practice.

Range Statement: Tasks to demonstrate this outcome may be performed in one or more of the following curriculum types:

 Work-directed theoretical learning: in which theoretical forms of knowledge are introduced and sequences in ways that meet both academic criteria and are applicable and relevant to the careerspecific components.

- 2. Problem-based learning: where students work in small self-directed groups to define, carry out and reflect on a task which is usually a real-life problem.
- 3. Project-based learning: that brings together intellectual enquiry, real world problems and student engagement in meaningful work.
- 4. Workplace learning: where students are placed in a professional practice or simulated environment within a training programme.
- 5. Simulated learning.

4. Graduate attributes assessment

ECSA Graduate attribute	Assessment details								
Graduate Attribute 1: Problem Solving									
Apply engineering principles to systematically diagnose and solve well-defined engineering problems.									
Where is outcome assessed?	In the work place.								
How is this outcome assessed?	Solving of work-based problems must be demonstrated in the maintenance and administration of equipment and systems on which work is performed.								
What is satisfactory performance?	Equipment on which maintenance and administration is performed must be demonstrated to be functioning correctly within the relevant system.								
What is the consequence of unsatisfactory performance?	Work must be repeated until the desired results can be demonstrated.								

Graduate Attribute 2: Application of scientific and engineering knowledge Apply knowledge of mathematics, natural science and engineering sciences to applied engineering procedures, processes, systems and methodologies to solve well-defined engineering problems.						
Where is outcome assessed?	In the work place.					
How is this outcome assessed?	Application of engineering knowledge applicable to the maintenance and administration of equipment and systems must be demonstrated.					
What is satisfactory performance?	The engineering knowledge and practices must be demonstrated to be appropriate to the requirements.					
What is the consequence of unsatisfactory performance?	Work must be repeated until the desired results can be demonstrated.					

Graduate Attribute 5: Engineering methods, skills, tools, including Information technology Use appropriate techniques, resources, and modern engineering tools, including information technology, prediction and modelling, for the solution of broadly-defined engineering problems, with an understanding of the limitations, restrictions, premises, assumptions and constraints.						
Where is outcome assessed?	In the work place.					
How is this outcome assessed?	Students are required to demonstrate the use of appropriate techniques, resources, and modern engineering tools in maintenance and administration of equipment and systems that they work on.					
What is satisfactory performance?	Students are required to demonstrate the use of appropriate techniques, resources and modern engineering tools in the maintenance and administration of systems that they work on.					
What is the consequence of unsatisfactory performance?	Work must be repeated until the required skills and methodologies can be demonstrated.					

Graduate Attribute 11: Workplace practices Demonstrate an understanding of workplace practices to solve engineering problems consistent with academic learning achieved.								
Where is outcome assessed?	Where is outcome assessed? In the work place.							
How is this outcome assessed?	Students are required to demonstrate the ability to apply appropriate theoretical knowledge and understanding to the systems and environment in which the work-place-based learning takes place.							
What is satisfactory performance?	Appropriate and applicable theoretical knowledge is used to perform maintenance and administration on computer systems.							
What is the consequence of unsatisfactory performance? Work must be repeated until the appropriate application theoretical knowledge can be demonstrated.								

5. Module Credits

L	TL	ML	T	Tt	Mt	P	Tp	Mp	X	Tx	Mx	A	Ta	E	Me	Credit
0	1	1	0	1	1	260	1	1	0	1	1	16	1	0	1	14

L	Lectures Sessions	TL	Lecture Duration	ML	Work per Lecture period
Т	Tutorials Sessions	Tt	Tutorial Duration	Mt	Work per tutorial period
P	P Practical Sessions Tp		Practical Duration	Мр	Work per practical period
Х	Other contact Sessions	Tx	Other Duration	Mx	Work other period
Α	Assessment	Та	1 Hour	E	Work outside (Me = 1)

6. Module Knowledge Profile

Mathematical Sciences	Natural Sciences	Engineering Sciences	Engineering Design	Computing and IT	Complementary Studies	Work Integrated learning	
						14	